Wednesday 22 March 2017

INDUCTION MOTOR

INDUCTION MOTOR

One of the most common electrical motor used in most applications which is known as induction motor. This motor is also called as asynchronous motor because it runs at a speed less than its synchronous speed. Here we need to define what synchronous speed is. Synchronous speed is the speed of rotation of the magnetic field in a rotary machine and it depends upon the frequency and number poles of the machine. An induction motor always runs at a speed less than synchronous speed because the rotating magnetic field which is produced in the stator will generate flux in the rotor which will make the rotor to rotate, but due to the lagging of flux current in the rotor with flux current in the stator, the rotor will never reach to its rotating magnetic field speed i.e. the synchronous speed. There are basically two types of induction motor that depend upon the input supply - single phase induction motor and three phase induction motor. Single phase induction motor is not a self-starting motor which we will discuss later and three phase induction motorist a self-starting motor.

Working Principle of Induction Motor:

We need to give double excitation to make a machine to rotate. For example if we consider a DC motor, we will give one supply to the stator and another to the rotor through brush arrangement. But in induction motor we give only one supply, so it is really interesting to know that how it works. It is very simple, from the name itself we can understand that induction process is involved. Actually when we are giving the supply to the stator winding, flux will generate in the coil due to flow of current in the coil. Now the rotor winding is arranged in such a way that it becomes short circuited in the rotor itself. The flux from the stator will cut the coil in the rotor and since the rotor coils are short circuited, according to Faraday's law of electromagnetic induction, current will start flowing in the coil of the rotor. When the current will flow, another flux will get generated in the rotor. Now there will be two flux, one is stator flux and another is rotor flux and the rotor flux will be lagging w.r.t to the stator flux. Due to this, the rotor will feel a torque which will make the rotor to rotate in the direction of rotating magnetic flux. So the speed of the rotor will be depending upon the ac supply and the speed can be controlled by varying the input supply. This is the working principle of an induction motor of either type – single and three phase.
Types Induction Motor:

Single Phase Induction Motor:

Split phase induction motor
Capacitor start induction motor
Capacitor start capacitor run induction motor
Shaded pole induction motor
Three Phase Induction Motor

Squirrel cage induction motor
Slip ring induction motor

Why is Three Phase Induction Motor Self Starting?

In three phase system, there are three single phase line with 120° phase difference. So the rotating magnetic field is having the same phase difference which will make the rotor to move. If we consider three phases a, b and c, when phase a is magnetized, the rotor will move towards the phase a winding a, in the next moment phase b will get magnetized and it will attract the rotor and then phase c. So the rotor will continue to rotate.

Why Single Phase Induction Motor is not Self Starting?

It will be having only one phase still it makes the rotor to rotate, so it is quite interesting. Before that we need to know why single phase induction motor is not a self-starting motor and how the problem is overcome. We know that the ac supply is a sinusoidal wave and it produces pulsating magnetic field in uniformly distributed stator winding. Since pulsating magnetic field can be assumed as two oppositely rotating magnetic fields, there will be no resultant torque produced at the starting and due to this the motor does not run. After giving the supply, if the rotor is made to rotate in either direction by external force, then the motor will start to run. This problem has been solved by making the stator winding into two winding, one is main winding and another is auxiliary winding and a capacitor is fixed in series with the auxiliary winding. This will make a phase difference when current will flow through the both coils. When there will be phase difference, the rotor will generate a starting torque and it will start to rotate. Practically we can see that the fan does not rotate when the capacitor is disconnected from the motor but if we rotate with hand it will start to rotate. So this is the reason of using capacitor in the single phase induction motor. There are several advantages of induction motor which makes this motor to have wider application. It is having good efficiency up to 97%. But the speed of the motor varies with the load given to the motor which is an disadvantage of this motor. The direction of rotation of induction motor can easily be changed by changing the sequence of three phase supply, i.e. if RYB is in forward direction, the RBY will make the motor to rotate in reverse direction. This is in the case of three phase motor but in single phase motor, the direction can be reversed by reversing the capacitor terminals in the winding.

Electrical Information

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation.

0 comments:

Post a Comment

 

Copyright @ 2013 Electrical Information.

Designed by Templateiy & CollegeTalks